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Forward Model Learning
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Sokoban – An Unforgiving Game

• Sokoban:

– The avatar needs to push the stones onto the circles

– Stones can only be pushed in case the next tile is empty

– If all circles are covered by a stone the player wins

• Single mistake can lead to a overall failure

– e.g. pushing the stone into a corner
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End-to-End Forward Models

• Predict the next state based on the current state and action

• Problems:

– Many training examples necessary

– Each game tick provides only one example

– The resulting state-transition function is overly complex

+ =

Alexander Dockhorn Slide 5/15, 23.08.2019



Local Forward Models - Motivation

Current State Next State
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Local Forward Models
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Local Forward Models
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Local Forward Models

+
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Local Forward Models - Implementation

+ =

• Each pattern provides a training example for any supervised learning method

• In this work, we used:

– a simple hash map

– and a decision tree

– In combination with a RHEA agent

• We studied the influence of:

– Pattern size

– Pattern shape
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Local Forward Models - Results

• Best results were achieved when using the cross pattern with a span of 2

– Which is matching the true model

• Decision trees are limited in their generalizability, but other classifiers, 
e.g. DL, may yield much better results

• The learned model transfers well to previously unseen levels.
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Observed Problems I

• A single error during the prediction can spread fast

Start State Final State Predicted State
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Observed Problems II

• All resulting models had a accuracy above 0.98, hower assuming a static 
environment yields similar accuracy

– What other  measures can be used to rate the applicability of the 
learned model?

– How to measure the confidence or risk of our model?

• Choosing the pattern span and pattern shape is an inherent feature 
selection problem.

– Can this be solved at run-time?
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Summary

• Local Forward Models can be efficient in learning forward models

– Due to the convolution many training samples are produced for a 
single game tick

– They can be easily transferred to unseen levels

• Next challenges:

– Adapt local forward models to more complex problems (e.g. GVGAI)

– Rating the model‘s precision or the agent‘s risk at run-time

– Learning local forward models for non-markovian games
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